Аннотация:
Если $(X, Y)$ есть наблюдение случайного вектора с функцией распределения $F(x-\theta,y)$, $\sigma^2=DX$, $\rho=\textrm{corr}(X,Y)$ и $I$ — информация Фишера о параметре $\theta$ в $(X,Y)$, то $I\ge\{\sigma^2(1-\rho^2)\}^{-1}$.
Равенство достигается при выполнении условий, тесно связанных с условиями линейности оценки Питмэна для $\theta$ по выборке из совокупности $F(x-\theta,y)$. Эти утвержения обобщают результаты, полученные ранее для случая, когда наблюдается только компонента $X$.