Аннотация:
Рассматривается ветвящийся процесс с движением частиц в пространстве в предположении, что хвост распределения продолжительности жизни частиц убывает степенным образом с показателем меньшим единицы. Выяснено, что в пространствах критической размерности такой процесс, в отличие от классических систем частиц, не является локально вырождающимся в случае, когда начальное распределение частиц — пространственно однородная пуассоновская популяция. Установлено, что при неограниченном во времени развитии популяции ее распределение сходится к распределению сложно пуассоновской системы частиц. Случайная интенсивность предельного процесса совпадает по распределению (в соответствующей точке пространства и в фиксированный момент времени) со случайной интенсивностью суперпроцесса с превращениями, зависящими от “возраста” суперчастиц. Доказательство использует тонкие свойства систем частиц, порожденных асимптотически большими, но конечными популяциями частиц.
Ключевые слова:ветвящиеся системы частиц, критическая размерность, предельные теоремы, долго живущие частицы, абсолютная непрерывность, случайная плотность, суперпроцесс, стационарность, сложно пуассоновская система частиц, остаточное время жизни процесса, устойчивый субординатор.