RUS  ENG
Полная версия
ЖУРНАЛЫ // Теория вероятностей и ее применения // Архив

Теория вероятн. и ее примен., 2001, том 46, выпуск 3, страницы 513–534 (Mi tvp3899)

On Central Limit Theorems for Vector Random Measures and Measure-Valued Processes

Z. G. Su

Hangzhou University, Department of Mathematics

Аннотация: Пусть $B$ — сепарабельное банахово пространство. Предположим, что $(F,F_i,i\ge 1)$ — последовательность независимых, одинаково распределенных, симметричных и независимо разбросанных случайных мер со значениями в $B$. Мы устанавливаем центральную предельную теорему для $Y_n=\frac{1}{\sqrt n}\sum_{i=1}^nF_i$, рассматривая случайные линейные функционалы на пространствах распределений Шварца. В тех же рамках исследуется центральная предельная теорема для мерозначных процессов $Z_n(t)=\frac{1}{\sqrt n}\sum_{i=1}^nX_i\delta_{B_i(t)}$, $t\in[0,1]$, где $(X,X_i,i\ge 1)$ — последовательность независимых, одинаково распределенных, симметричных случайных векторов со значениями в $B$ и $(B,B_i,i\ge 1)$ — последовательность независимых стандартных броуновских движений на [0,1], не зависящих от $(X,X_i,i\geq 1)$. Наши основные результаты, касающиеся $Y_n$, отличаются от результатов [8] тем, что мы рассматриваем $F$ в целом, тогда как утверждения, связанные с $Z_n$, являются обобщением [7] на случайные взвешенные массы.

Ключевые слова: центральная предельная теорема, гауссовский процесс, случайная векторная мера, пространства Шварца.

Поступила в редакцию: 16.09.1997

Язык публикации: английский

DOI: 10.4213/tvp3899


 Англоязычная версия: Theory of Probability and its Applications, 2002, 46:3, 448–468

Реферативные базы данных:


© МИАН, 2024