RUS  ENG
Полная версия
ЖУРНАЛЫ // Теория вероятностей и ее применения // Архив

Теория вероятн. и ее примен., 2013, том 58, выпуск 1, страницы 152–176 (Mi tvp4498)

Эта публикация цитируется в 16 статьях

О точности нормальной аппроксимации для обобщенных пуассоновских распределений

И. Г. Шевцова

Московский государственный университет им. М. В. Ломоносова, факультет вычислительной математики и кибернетики

Аннотация: Впервые найдено точное значение асимптотически правильной константы в аналоге неравенства Берри–Эссеена для пуассоновских случайных сумм независимых одинаково распределенных случайных величин $X_1,X_2,\ldots,$ имеющих моменты третьего порядка. Кроме того, для равномерного расстояния $\Delta_\lambda$ между функцией распределения стандартного нормального закона и функцией распределения центрированной и нормированной случайной суммы $S_\lambda=X_1+\cdots+X_{N_\lambda}$, где ${N_\lambda}$ имеет распределение Пуассона с параметром $\lambda>0$ и независима от $X_1,X_2,\ldots,$ получены оценки:
$$ \Delta_\lambda\le \frac{2\ell_\lambda}{3\sqrt{2\pi}} + 0.5\cdot\ell_\lambda^2< 0.2660\cdot\ell_\lambda+0.5\cdot\ell_\lambda^2,\quad \hbox{где}\ \ell_\lambda= \frac{\mathbf{E}|X_1|^3}{\sqrt{\lambda}(\mathbf{E} X_1^2)^{3/2}}. $$
Показано, что эта оценка неулучшаема в отношении множителя $2/(3\sqrt{2\pi})=0.2659\ldots$ при $\ell_\lambda$. Для случая, когда распределение $X_1$ симметрично, доказана уточненная оценка
$$ \Delta_\lambda\le \frac{1+2\varkappa}{2\sqrt{2\pi}}\,\ell_\lambda + 0.4\cdot \ell_\lambda^2< 0.2391\cdot\ell_\lambda + 0.4\cdot \ell_\lambda^2, $$
где $\varkappa=\sup_{x>0}(\cos x-1+x^2/2)/x^3=0.0991\ldots\,.$ Показано, что значение множителя при $\ell_\lambda$ в этой оценке не может быть меньше $(2\sqrt{2\pi})^{-1}=0.1994\ldots\,.$ Получены аналогичные оценки при ослабленных моментных условиях, когда $\mathbf{E}|X_1|^{2+\delta}<\infty$ с некоторым $0<\delta<1.$

Ключевые слова: пуассоновская случайная сумма, центральная предельная теорема, оценка скорости сходимости, нормальная аппроксимация, неравенство Берри–Эссеена, асимптотически правильная константа.

MSC: 60

Поступила в редакцию: 16.03.2012

DOI: 10.4213/tvp4498


 Англоязычная версия: Theory of Probability and its Applications, 2014, 58:1, 138–158

Реферативные базы данных:


© МИАН, 2024