RUS  ENG
Полная версия
ЖУРНАЛЫ // Теория вероятностей и ее применения // Архив

Теория вероятн. и ее примен., 2024, том 69, выпуск 2, страницы 335–353 (Mi tvp5628)

Эта публикация цитируется в 1 статье

Об абсолютной непрерывности меры Эрдёша для золотого сечения, числа трибоначчи и марковских цепей второго порядка

В. Л. Куликовa, Е. Ф. Олеховаa, В. И. Оселедецbc

a Финансовый университет при Правительстве Российской Федерации, Москва, Россия
b Федеральный исследовательский центр химической физики им. Н. Н. Семенова Российской академии наук, Москва, Россия
c Московский государственный университет имени М. В. Ломоносова, механико-математический факультет, Москва, Россия

Аннотация: Рассматривается степенной ряд в фиксированной точке $\rho \in (0.5,1)$, где случайные коэффициенты принимают значения $0$, $1$ и образуют стационарный, эргодический и апериодический процесс. Мера Эрдёша — это закон распределения такого ряда. Задача об абсолютной непрерывности меры Эрдёша сводится к вопросу, когда соответствующая скрытая марковская цепь является марковской цепью Перри. Для золотого сечения и 1-марковских цепей мы получаем необходимые и достаточные условия абсолютной непрерывности меры Эрдёша и, используя марковские цепи Блекуэлла, даем новое доказательство того, что необходимые условия, найденные ранее (Теория вероятн. и ее примен., 51:1 (2006), 5–21), являются достаточными. Для числа трибоначчи и 1-марковских цепей получено новое доказательство теоремы о сингулярности меры Эрдёша. Для числа трибоначчи и 2-марковских цепей найдено только два случая абсолютной непрерывности.

Ключевые слова: меры Эрдёша, инвариантные меры Эрдёша, скрытые марковские цепи, софические меры, марковские цепи Блекуэлла, золотое сечение, число трибоначчи, компакт Фибоначчи, компакт трибоначчи, марковское разбиение.

Поступила в редакцию: 17.01.2023
Исправленный вариант: 04.09.2023
Принята в печать: 31.10.2023

DOI: 10.4213/tvp5628


 Англоязычная версия: Theory of Probability and its Applications, 2024, 69:2, 265–280

Реферативные базы данных:


© МИАН, 2024