Аннотация:
Методом потенциальных монотонных операторов для различных классов интегральных уравнений типа свертки с монотонной нелинейностью доказаны глобальные теоремы о существовании, единственности и способах нахождения решений в вещественных пространствах Лебега. Показано, что решения могут быть найдены в пространстве $L_2(0, 1)$ методом последовательных приближений пикаровского типа и доказаны оценки скорости их сходимости. Полученные результаты охватывают, в частности, линейные интегральные уравнения типа свертки. В случае степенной нелинейности показано, что решения могут быть найдены градиентным методом в пространствах $L_p(0, 1)$ и весовых пространствах $L_p(\varrho)$.