Аннотация:
Работа посвящена исследованию решений уравнения $u_{xx}+Q(x)u+P(x)u^3=0$. Уравнения такого рода используются для описания стационарных мод в моделях конденсата Бозе–Эйнштейна. Известно, что при некоторых условиях на $P(x)$ и $Q(x)$, “большая часть” решений уравнений такого типа оказывается сингулярными, т.е. уходящими на бесконечность в конечной точке числовой прямой. В некоторых ситуациях это обстоятельство позволяет эффективно использовать методы символической динамики для изучения не сингулярных решений этого уравнения. В настоящей статье (i) устанавливаются достаточные условия для существования сингулярных решений этого уравнения, а также достаточные условия для их полного отсутствия; (ii) приводятся результаты численного исследования не сингулярных решений для случая, когда $Q(x)$ является константой, а $P(x)$ является знакопеременной периодической функцией. На основании этих результатов выдвигается предположение, что все не сингулярные решения в этом случае могут быть кодированы бесконечными последовательностями из символов алфавита, состоящего из счетного числа символов.
Ключевые слова:уравнения с периодическими коэффициентами, нелинейное уравнение Шредингера, стационарные моды.