On   zeros of    polynomial
			
			Subhasis Das		 Department of Mathematics, Kurseong College, Dow Hill Road, 734203, Kurseong, India
					
			Аннотация:
			For a given polynomial
\begin{equation*}
P\left( z\right) =z^{n}+a_{n-1}z^{n-1}+a_{n-2}z^{n-2}+\cdots +a_{1}z+a_{0}
\end{equation*}
with real or complex coefficients,
the Cauchy bound
\begin{equation*}
\left\vert z\right\vert <1+A,\qquad A=\underset{0\leqslant j\leqslant n-1}{
\max }\left\vert a_{j}\right\vert
\end{equation*}
does not reflect the fact that for 
$A$ tending to zero, all the zeros of 
$P\left( z\right) $ approach the origin 
$z=0$. Moreover, Guggenheimer (1964)
generalized the Cauchy  bound by using a lacunary type polynomial
\begin{equation*}
p\left( z\right) =z^{n}+a_{n-p}z^{n-p}+a_{n-p-1}z^{n-p-1}+\cdots
+a_{1}z+a_{0}, \qquad 0<p<n\text{.}
\end{equation*}
In this paper we obtain  new results related with above facts. Our first result is the best possible. For the case as  
$A$
tends to zero,  it reflects the fact that all the zeros of 
$P(z)$ approach the origin 
$z=0$; it also sharpens the result obtained by Guggenheimer.
The rest of the related results concern zero-free bounds giving
some important corollaries. In many cases the new bounds are much
better than other well-known bounds.
				
			
Ключевые слова:
			zeroes, region, Cauchy bound, Lacunary type polynomials.	
			
УДК:
			512.622.2	
			
MSC: 30C15, 
30C10, 
26C10	Поступила в редакцию: 30.08.2017	
			
Язык публикации: английский