RUS  ENG
Полная версия
ЖУРНАЛЫ // Уфимский математический журнал // Архив

Уфимск. матем. журн., 2019, том 11, выпуск 1, страницы 113–119 (Mi ufa465)

On zeros of polynomial

Subhasis Das

Department of Mathematics, Kurseong College, Dow Hill Road, 734203, Kurseong, India

Аннотация: For a given polynomial
\begin{equation*} P\left( z\right) =z^{n}+a_{n-1}z^{n-1}+a_{n-2}z^{n-2}+\cdots +a_{1}z+a_{0} \end{equation*}
with real or complex coefficients, the Cauchy bound
\begin{equation*} \left\vert z\right\vert <1+A,\qquad A=\underset{0\leqslant j\leqslant n-1}{ \max }\left\vert a_{j}\right\vert \end{equation*}
does not reflect the fact that for $A$ tending to zero, all the zeros of $P\left( z\right) $ approach the origin $z=0$. Moreover, Guggenheimer (1964) generalized the Cauchy bound by using a lacunary type polynomial
\begin{equation*} p\left( z\right) =z^{n}+a_{n-p}z^{n-p}+a_{n-p-1}z^{n-p-1}+\cdots +a_{1}z+a_{0}, \qquad 0<p<n\text{.} \end{equation*}
In this paper we obtain new results related with above facts. Our first result is the best possible. For the case as $A$ tends to zero, it reflects the fact that all the zeros of $P(z)$ approach the origin $z=0$; it also sharpens the result obtained by Guggenheimer. The rest of the related results concern zero-free bounds giving some important corollaries. In many cases the new bounds are much better than other well-known bounds.

Ключевые слова: zeroes, region, Cauchy bound, Lacunary type polynomials.

УДК: 512.622.2

MSC: 30C15, 30C10, 26C10

Поступила в редакцию: 30.08.2017

Язык публикации: английский


 Англоязычная версия: Ufa Mathematical Journal, 2019, 11:1, 114–120

Реферативные базы данных:


© МИАН, 2024