RUS  ENG
Полная версия
ЖУРНАЛЫ // Уфимский математический журнал // Архив

Уфимск. матем. журн., 2019, том 11, выпуск 2, страницы 99–117 (Mi ufa474)

Предельные множества Азарина функций и асимптотическое представление интегралов

К. Г. Малютинa, Т. И. Малютинаa, Т. В. Шевцоваb

a ФГБОУ ВО «Курский государственный университет», ул. Радищева, 33, 305000, г. Курск, Россия
b ФГБОУ ВО «Юго-Западный государственный университет» , ул. 50 лет Октября, 94, 305040, г. Курск, Россия

Аннотация: В представленной статье рассматриваются интегралы вида
$$\int\limits_a^b f(t)\exp[i\varphi(rt)\ln(rt)]\,dt\,,$$
где $\varphi(r)$ — гладкая, возpастающая функция на полуоси $[0,\infty)$ такая, что $\lim_{r\to+\infty}\varphi(r)=\infty$. Получены точные сведения об их асимптотическом поведении. Мы доказываем аналог леммы Римана–Лебега для тригонометрических интегралов. Применение этой леммы позволяет получить асимптотические формулы для интегралов с абсолютно непрерывной функцией. Предлагаемый метод получения асимптотических формул отличается от классических методов (метод Лапласа, применение теории вычетов, метод перевала и др.) Чтобы добиться большей цельности изложения мы, по большей части, ограничиваемся ядрами $\exp[i\ln^p(rt)]$. Соответствующие условия гладкости на функцию $f(t)$ позволяют получать многочленные формулы. Свойства интегралов и методы получения асимптотических оценок различаются для случаев $p\in(0,1)$, $p=1$, $p>1$. При $p\in(0,1)$ асимптотические разложения получаются уже другим методом — методом разложения ядра в ряд. Рассматриваются случаи, когда в качестве абсолютно непрерывной функции $f(t)$ берется произведение степенной функции $t^\rho$ на ядро Пуассона или сопряженное ядро Пуассона для полуплоскости, а в качестве промежутка интегрирования берется мнимая полуось. Вещественные и мнимые части этих интегралов представляют собой гармонические функции в комплексной плоскости, разрезанной по положительному лучу. Найдены предельные множества Азарина для таких функций.

Ключевые слова: лемма Римана–Лебега, тригонометрический интеграл, асимптотическая формула, ядро Пуассона, гармоническая функция, предельное множество Азарина.

УДК: 517.53

MSC: 30E15, 31C05

Поступила в редакцию: 18.06.2018


 Англоязычная версия: Ufa Mathematical Journal, 2019, 11:2, 97–113

Реферативные базы данных:


© МИАН, 2024