RUS  ENG
Полная версия
ЖУРНАЛЫ // Уфимский математический журнал // Архив

Уфимск. матем. журн., 2019, том 11, выпуск 4, страницы 107–113 (Mi ufa494)

On triple derivations of partially ordered sets

A. Y. Abdelwanis

Department of Mathematics, Faculty of Science, Cairo University, Giza, 12613 Egypt

Аннотация: In this paper, as a generalization of derivation on a partially ordered set, the notion of a triple derivation is presented and studied on a partially ordered set. We study some fundamental properties of the triple derivation on partially ordered sets. Moreover, some examples of triple derivations on a partially ordered set are given. Furthermore, it is shown that the image of an ideal under triple derivation is an ideal under some conditions. Also, the set of fixed points under triple derivation is an ideal under certain conditions. We establish a series of further results of the following nature. Let $(P,\leq)$ be a partially ordered set.
1. If $d,s$ are triple derivations on $P,$ then $d=s$ if and only if $\mathrm{Fix}_{d}(P)=\mathrm{Fix}_{s}(P).$
2. If $d$ is a triple derivation on $P,$ then, for all $x \in P$;$ \mathrm{Fix}_{d}(P)\cap l(x) = l(d(x)).$
3. If $d$ and $s$ are two triple derivations on $P,$ then $d$ and $s$ commute.
4. If $d$ and $s$ are two triple derivations on $P,$ then $d \leq s$ if and only if $sd = d.$
In the end, the properties of ideals and operations related to triple derivations are examined.

Ключевые слова: triple derivation, fixed point, ideal, partially ordered set.

MSC: 06E20, 13N15

Поступила в редакцию: 15.11.2018

Язык публикации: английский


 Англоязычная версия: Ufa Mathematical Journal, 2019, 11:4, 108–114

Реферативные базы данных:


© МИАН, 2024