RUS  ENG
Полная версия
ЖУРНАЛЫ // Уфимский математический журнал // Архив

Уфимск. матем. журн., 2020, том 12, выпуск 3, страницы 99–108 (Mi ufa525)

Эта публикация цитируется в 1 статье

Exponential Rosenthal and Marcinkiewicz–Zygmund inequalities

Kwok-Pun Ho

Department of Mathematics and Information Technology, The Education Univeristy of Hong Kong, 10 Lo Ping road, Tai Po, Hong Kong, China

Аннотация: We extend the Rosenthal inequalities and the Marcinkiewicz–Zygmund inequalities to some exponential Orlicz spaces.The Rosenthal inequalities and the Marcinkiewicz–Zygmund inequalities are fundamental estimates on the moment of random variables on Lebesgue spaces. The proofs of the Rosenthal inequalities and the Marcinkiewicz–Zygmund inequalities on the exponential Orlicz spaces rely on two results from theory of function spaces and probability theory. The first one is an extrapolation property of the exponential Orlicz spaces. This property guarantees that the norms of some exponential Orlicz spaces can be obtained by taking the supremum over the weighted norms of Lebesgue spaces. The second one is the sharp estimates for the constants involved in the Rosenthal inequalities and the Marcinkiewicz–Zygmund inequalities on Lebesgue spaces. Our results are applications of the extrapolation property of the exponential Orlicz spaces and the sharp estimates for the constants involved in the Rosenthal inequalities and the Marcinkiewicz–Zygmund inequalities on Lebesgue spaces. In addition, the sharp estimates for the constants involved in the Rosenthal inequalities and the Marcinkiewicz–Zygmund inequalities on Lebesgue spaces provide not only some sharpened inequalities in probability, but also yield some substantial contributions on extending those probability inequalities to the exponential Orlicz spaces.

Ключевые слова: Rosenthal inequality, Marcinkiewicz–Zygmund inequalities, martingale, exponential spaces, Orlicz spaces.

УДК: 517.958

MSC: 60G42, 60G46, 46E30

Поступила в редакцию: 08.01.2020

Язык публикации: английский


 Англоязычная версия: Ufa Mathematical Journal, 2020, 12:3, 97–106

Реферативные базы данных:


© МИАН, 2024