Аннотация:
Исследуются абстрактные вольтерровы интегро-дифференциальные уравнения, которые являются операторными моделями задач теории вязкоупругости. К рассматриваемому классу уравнений относятся также интегро-дифференциальные уравнения Гуртина – Пипкина, описывающие процесс распространения тепла в средах с памятью. В качестве ядер интегральных операторов могут быть рассмотрены, в частности, суммы убывающих экспонент или суммы функций Работнова с положительными коэффициентами, имеющие широкое применение в теории вязкоупугости и теории распространения тепла.
Представленные результаты базируются на подходе, связанном с исследованием однопараметрических полугрупп для линейных эволюционных уравнений. Приводится метод сведения исходной начальной задачи для модельного интегро-дифференциального уравнения с операторными коэффициентами в гильбертовом пространстве к задаче Коши для дифференциального уравнения первого порядка. Представлены результаты о существовании сильно непрерывной сжимающей полугруппы, порождаемой вольтерровым интегро-дифференциальным уравнением с операторными коэффициентами в гильбертовом пространстве. Установлено экспонециальное убывание полугруппы при известных предположениях для ядер интегральных операторов. На основе полученных результатов установлена корректная разрешимость исходной начальной задачи для вольтеррова интегро-дифференциального уравнения с соответсвующими оценками решения.
Предлагаемый подход может быть также использован для исследования других интегро-дифференциальных уравнений, содержащих интегральные слагаемые вида вольтеррой свертки.