RUS  ENG
Полная версия
ЖУРНАЛЫ // Уфимский математический журнал // Архив

Уфимск. матем. журн., 2022, том 14, выпуск 3, страницы 131–144 (Mi ufa626)

On boundary properties of asymptotically holomorphic functions

A. Sukhovab

a Institute of Mathematics, Ufa Federal Research Center, RAS, Chernyshevky str. 112, 450008, Ufa, Russia
b Université de Lille, Laboratoire Paul Painlevé, Departement de Mathématique, 59655 Villeneuve d'Ascq, Cedex, France

Аннотация: It is well known that for a generic almost complex structure on an almost complex manifold $(M,J)$ all holomorphic (even locally) functions are constants. For this reason the analysis on almost complex manifolds concerns the classes of functions which satisfy the Cauchy-Riemann equations only approximately. The choice of such a condition depends on a considered problem. For example, in the study of zero sets of functions the quasiconformal type conditions are very natural. This was confirmed by the famous work of S. Donaldson. In order to study the boundary properties of classes of functions (on a manifold with boundary) other type of conditions are suitable. In the present paper we prove a Fatou type theorem for bounded functions with $\overline\partial_J$ differential of a controled growth on smoothly bounded domains in an almost complex manifold. The obtained result is new even in the case of $\mathbb{C}^n$ with the standard complex structure. Furthermore, in the case of $\mathbb{C}^n$ we obtain results with optimal regularity assumptions. This generalizes several known results.

Ключевые слова: almost complex manifold, $\overline\partial$-operator, admissible region, Fatou theorem.

MSC: 32H02, 53C15

Поступила в редакцию: 28.04.2022

Язык публикации: английский


 Англоязычная версия: Ufa Mathematical Journal, 2022, 14:3, 127–140

Реферативные базы данных:


© МИАН, 2024