RUS  ENG
Полная версия
ЖУРНАЛЫ // Уфимский математический журнал // Архив

Уфимск. матем. журн., 2022, том 14, выпуск 4, страницы 131–144 (Mi ufa631)

Эта публикация цитируется в 1 статье

Singular Hahn–Hamiltonian systems

B. P. Allahverdieva, H. Tunab

a Süleyman Demirel University, Department of Mathematics, 32260 Isparta, Turkey
b Mehmet Akif Ersoy University, Department of Mathematics, 15030 Burdur, Turkey

Аннотация: In this work, we study a Hahn–Hamiltonian system in the singular case. For this system, the Titchmarsh–Weyl theory is established. In this context, the first part provides a summary of the relevant literature and some necessary fundamental concepts of the Hahn calculus. To pass from the Hahn difference expression to operators, we define the Hilbert space $L_{\omega,q,W} ^{2}((\omega_{0},\infty);\mathbb{C}^{2n})$ in the second part of the work. The corresponding maximal operator $L_{\max}$ are introduced. For the Hahn–Hamiltonian system, we proved Green formula. Then we introduce a regular self-adjoint Hahn–Hamiltonian system. In the third part of the work, we study Titchmarsh-Weyl functions $M(\lambda)$ and circles $\mathcal{C}(a,\lambda)$ for this system. These circles proved to be embedded one to another. The number of square-integrable solutions of the Hahn–Hamilton system is studied. In the fourth part of the work, we obtain boundary conditions in the singular case. Finally, we define a self-adjoint operator in the fifth part of the work.

Ключевые слова: Hahn–Hamiltonian system, singular point, Titchmarsh–Weyl theory.

MSC: 39A13, 34B20

Поступила в редакцию: 12.10.2021

Язык публикации: английский


 Англоязычная версия: Ufa Mathematical Journal, 2022, 14:4, 127–140

Реферативные базы данных:


© МИАН, 2024