RUS  ENG
Полная версия
ЖУРНАЛЫ // Уфимский математический журнал // Архив

Уфимск. матем. журн., 2024, том 16, выпуск 2, страницы 37–66 (Mi ufa692)

Индуктивные методы для неравенства Харди на деревьях

А. И. Парфёнов

Институт математики им. С.Л. Соболева СО РАН, пр. акад. Коптюга, 4, 630090, г. Новосибирск, Россия

Аннотация: Мы изучаем неравенство Харди на не более чем счетном дереве с корнем. Главными известными критериями для него в нижнетреугольном случае являются два критерия Аркоцци, Рохберга и Сойера (2002) и емкостной критерий. В литературном обзоре показано, что эти критерии примыкают к критериям для неравенства Харди для последовательностей, для неравенства Харди на интервале вещественной оси и для следовых неравенств с потенциалами Рисса. Приведены примеры в литературе, когда следовое неравенство или иное утверждение характеризуется в терминах справедливости неравенства Харди на дереве. Мы упрощаем два известных доказательства критерия Аркоцци, Рохберга и Сойера, которые основаны на интерполяционной теореме Марцинкевича и на емкостном критерии. Мы даем новые доказательства критериев Аркоцци, Рохберга и Сойера, которые основаны на индукции по дереву, индуктивной формуле для емкости и формуле интегрирования по частям. Последнее из доказательств записано для неравенства Харди на дереве с границей и для неравенства Харди над семейством всех двоичных кубов. В диагональном случае это доказательство доставляет оптимальную постоянную $p$, которая совпадает с постоянной Беннетта в неравенстве Харди для последовательностей. В общем случае даны несколько новых индуктивных критериев справедливости неравенства Харди в терминах существования семейства функций, удовлетворяющих индуктивному соотношению. Один из этих критериев применен при доказательстве теоремы, содержащей дополнительные эквивалентные условия справедливости неравенства Харди на деревьях в диагональном случае.

Ключевые слова: двухвесовое неравенство, дерево с корнем, неравенство Харди.

УДК: 519.172.1

MSC: 05C05, 31C20, 47A30

Поступила в редакцию: 17.07.2023


 Англоязычная версия: Ufa Mathematical Journal, 2024, 16:2, 36–65


© МИАН, 2024