RUS  ENG
Полная версия
ЖУРНАЛЫ // Уфимский математический журнал // Архив

Уфимск. матем. журн., 2024, том 16, выпуск 3, страницы 118–129 (Mi ufa700)

Categorical criterion for existence of universal $C^*$–algebras

R. N. Gumerova, E. V. Lipachevaab, K. A. Shishkina

a Lobachevskii Institute of Mathematics and Mechanics, Kazan (Volga Region) Federal University, Kremlevskaya str. 35, 420008, Kazan, Russia
b Chair of Higher Mathematics, Kazan State Power Engineering University, Krasnoselskaya str. 51, 420066, Kazan, Russia

Аннотация: We deal with categories, which determine universal $C^*$–algebras. These categories are called the compact $C^*$–relations. They were introduced by T.A. Loring. Given a set $X,$ a compact $C^*$–relation on $X$ is a category, the objects of which are functions from $X$ to $C^*$–algebras, and morphisms are $\ast$–homomorphisms of $C^*$–algebras making the appropriate triangle diagrams commute. Moreover, these functions and $\ast$–homomorphisms satisfy certain axioms. In this article, we prove that every compact $C^*$–relation is both complete and cocomplete. As an application of the completeness of compact $C^*$–relations, we obtain the criterion for the existence of universal $C^*$–algebras.

Ключевые слова: compact $C^*$–relation, complete category, universal $C^*$–algebra.

MSC: 16B50, 46L05, 46M15

Поступила в редакцию: 03.11.2023

Язык публикации: английский


 Англоязычная версия: Ufa Mathematical Journal, 2024, 16:3, 113–124


© МИАН, 2025