RUS  ENG
Полная версия
ЖУРНАЛЫ // Уфимский математический журнал // Архив

Уфимск. матем. журн., 2025, том 17, выпуск 1, страницы 3–24 (Mi ufa719)

Интегральные неравенства, инвариантные при конформных преобразованиях

Ф. Г. Авхадиев

Казанский федеральный университет, ул. Кремлевская 18, 420008 г. Казань, Россия

Аннотация: Пользуясь метрикой Пуанкаре, мы определяем конформно инвариантные интегралы для гладких финитных функций, заданных в областях гиперболического типа на расширенной плоскости. Для этих интегралов, содержащих гиперболический радиус, гладкую функцию, ее градиент или лапласиан, рассматриваются конформно инвариантные аналоги неравенств типа Харди и Реллиха с константами, зависящими от области. Мы даем явные оценки констант, пользуясь числовыми характеристиками области, а именно, максимальными модулями области и геометрической константой, входящей в линейное гиперболическое изопериметрическое неравенство.
В статье нами доказаны несколько новых утверждений. В частности, обоснован критерий положительности констант для конечно–связных областей гиперболического типа и доказаны несколько интегральных неравенств, универсальных в том смысле, что эти неравенства не содержат неопределенных констант и справедливы в любой области гиперболического типа.
В начале статьи кратко изложены свойства гиперболического радиуса, а также описаны несколько родственных результатов. В частности, указаны результаты Шмидта, Оссермана, Фернандеса и Родригеса по гиперболическим изопериметрическим неравенствам и их применениям, дана формула Элстродта — Паттерсона — Салливана для критических показателей сходимости рядов Пуанкаре — Дирихле, а также приведен результат Карлесона и Гамелина по максимальным модулям области с равномерно совершенной границей.

Ключевые слова: метрика Пуанкаре, конформное отображение, изопериметрическое неравенство, неравенство типа Харди, оператор Лапласа.

УДК: 517.5

MSC: 26D10, 33C20

Поступила в редакцию: 18.04.2024


 Англоязычная версия: Ufa Mathematical Journal, 2025, 17:1, 1–21


© МИАН, 2025