Аннотация:
В статье рассматривается опыт авторов по построению априорной оценки финальных результатов успеваемости студентов в цифровой образовательной платформе Мирера. Оценка строится по результатам промежуточной проверки успеваемости, полученным из промежуточных проверок на семинарах, при выполнении домашних заданий и проверочных работ. При этом учитываются как непосредственные результаты проверок, так и поведение студента при их выполнении. В предлагаемом подходе студенты условно разделены на три категории: отстающие студенты с неудовлетворительным финальным результатом, удовлетворительно успевающие студенты со средним результатом и студенты с высоким результатом. Для каждой категории студентов можно определить характер и целесообразность автоматизации корректирующих действий преподавателя для «подтягивания» отстающих. Оценка строится с использованием искусственных нейронных сетей. Полученная априорная оценка может быть использована для раннего обнаружения студентов, которые могут быть отчислены за неуспеваемость и которым необходима помощь преподавателя, а также для построения адаптивных треков обучения средне и хорошо успевающих студентов. Предлагаемый подход может быть применен только при условии цифровой трансформации учебного процесса.