RUS  ENG
Полная версия
ЖУРНАЛЫ // Ural Mathematical Journal // Архив

Ural Math. J., 2022, том 8, выпуск 2, страницы 143–152 (Mi umj179)

Inequalities pertaining to rational functions with prescribed poles

Nisar Ahmad Rather, Mohmmad Shafi Wani, Ishfaq Dar

University of Kashmir

Аннотация: Let $\Re_n$ be the set of all rational functions of the type $r(z) = p(z)/w(z),$ where $p(z)$ is a polynomial of degree at most $n$ and $w(z) = \prod_{j=1}^{n}(z-a_j)$, $|a_j|>1$ for $1\leq j\leq n$. In this paper, we set up some results for rational functions with fixed poles and restricted zeros. The obtained results bring forth generalizations and refinements of some known inequalities for rational functions and in turn produce generalizations and refinements of some polynomial inequalities as well.

Ключевые слова: rational functions, polynomials, inequalities.

Язык публикации: английский

DOI: 10.15826/umj.2022.2.012



Реферативные базы данных:


© МИАН, 2024