Эта публикация цитируется в
1 статье
A new characterization of symmetric dunkl and $q$-dunkl-classical orthogonal polynomials
Yahia Habbachi Université de Gabès
Аннотация:
In this paper, we consider the following
$\mathcal{L}$-difference equation
$$\Phi(x) \mathcal{L}P_{n+1}(x)=(\xi_nx+\vartheta_n)P_{n+1}(x)+\lambda_nP_{n}(x),\quad n\geq0,$$
where
$\Phi$ is a monic polynomial (even),
$\deg\Phi\leq2$,
$\xi_n,\,\vartheta_n,\,\lambda_n,\,n\geq0$, are complex numbers and
$\mathcal{L}$ is either the Dunkl operator
$T_\mu$ or the the
$q$-Dunkl operator
$T_{(\theta,q)}$. We show that if
$\mathcal{L}=T_\mu$, then the only symmetric orthogonal polynomials satisfying the previous equation are, up a dilation, the generalized Hermite polynomials and the generalized Gegenbauer polynomials and if
$\mathcal{L}=T_{(\theta,q)}$, then the
$q^2$-analogue of generalized
Hermite and the
$q^2$-analogue of generalized Gegenbauer polynomials are, up a dilation, the only orthogonal polynomials sequences
satisfying the
$\mathcal{L}$-difference equation.
Ключевые слова:
Orthogonal polynomials, Dunkl operator,
$q$-Dunkl operator.
Язык публикации: английский
DOI:
10.15826/umj.2023.2.009