RUS  ENG
Полная версия
ЖУРНАЛЫ // Ural Mathematical Journal // Архив

Ural Math. J., 2023, том 9, выпуск 2, страницы 109–120 (Mi umj208)

Эта публикация цитируется в 1 статье

A new characterization of symmetric dunkl and $q$-dunkl-classical orthogonal polynomials

Yahia Habbachi

Université de Gabès

Аннотация: In this paper, we consider the following $\mathcal{L}$-difference equation
$$\Phi(x) \mathcal{L}P_{n+1}(x)=(\xi_nx+\vartheta_n)P_{n+1}(x)+\lambda_nP_{n}(x),\quad n\geq0,$$
where $\Phi$ is a monic polynomial (even), $\deg\Phi\leq2$, $\xi_n,\,\vartheta_n,\,\lambda_n,\,n\geq0$, are complex numbers and $\mathcal{L}$ is either the Dunkl operator $T_\mu$ or the the $q$-Dunkl operator $T_{(\theta,q)}$. We show that if $\mathcal{L}=T_\mu$, then the only symmetric orthogonal polynomials satisfying the previous equation are, up a dilation, the generalized Hermite polynomials and the generalized Gegenbauer polynomials and if $\mathcal{L}=T_{(\theta,q)}$, then the $q^2$-analogue of generalized Hermite and the $q^2$-analogue of generalized Gegenbauer polynomials are, up a dilation, the only orthogonal polynomials sequences satisfying the $\mathcal{L}$-difference equation.

Ключевые слова: Orthogonal polynomials, Dunkl operator, $q$-Dunkl operator.

Язык публикации: английский

DOI: 10.15826/umj.2023.2.009



Реферативные базы данных:


© МИАН, 2024