RUS  ENG
Полная версия
ЖУРНАЛЫ // Ural Mathematical Journal // Архив

Ural Math. J., 2025, том 11, выпуск 1, страницы 114–123 (Mi umj250)

Stability of general quadratic Euler–Lagrange functional equations in modular spaces: a fixed point approach

Parbati Sahaa, Pratap Mondalb, Binayak S. Choudhurya

a Indian Institute of Engineering Science and Technology, Shibpur
b Bijoy Krishna Girls’ College

Аннотация: In this paper, we establish a result on the Hyers–Ulam–Rassias stability of the Euler–Lagrange functional equation. The work presented here is in the framework of modular spaces. We obtain our results by applying a fixed point theorem. Moreover, we do not use the $\Delta_\alpha$-condition of modular spaces in the proofs of our theorems, which introduces additional complications in establishing stability. We also provide some corollaries and an illustrative example. Apart from its main objective of obtaining a stability result, the present paper also demonstrates how fixed point methods are applicable in modular spaces.

Ключевые слова: Hyers–Ulam–Rassias stability, Euler–Lagrange functional equation, Modular spaces, Convexity, Fixed point method

Язык публикации: английский

DOI: 10.15826/umj.2025.1.008



Реферативные базы данных:


© МИАН, 2025