RUS  ENG
Полная версия
ЖУРНАЛЫ // Ural Mathematical Journal // Архив

Ural Math. J., 2017, том 3, выпуск 2, страницы 40–45 (Mi umj41)

Эта публикация цитируется в 3 статьях

On the best approximation of the infinitesimal generator of a contraction semigroup in a Hilbert space

Elena E. Berdyshevaa, Maria A. Filatovabc

a Mathematisches Institut, Justus Liebig Universität Giessen
b Ural Federal University, Ekaterinburg
c Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Аннотация: Let $A$ be the infinitesimal generator of a strongly continuous contraction semigroup in a Hilbert space $H$. We give an upper estimate for the best approximation of the operator $A$ by bounded linear operators with a prescribed norm in the space $H$ on the class $Q_2 = \{x\in \mathcal{D}(A^2) : \|A^2 x\| \leq 1\}$, where $\mathcal D(A^2)$ denotes the domain of $A^2$.

Ключевые слова: Contraction semigroup, Infinitesimal generator, Stechkin's problem.

Язык публикации: английский

DOI: 10.15826/umj.2017.2.006



Реферативные базы данных:


© МИАН, 2025