RUS  ENG
Полная версия
ЖУРНАЛЫ // Ural Mathematical Journal // Архив

Ural Math. J., 2017, том 3, выпуск 2, страницы 67–73 (Mi umj44)

On interpolation by almost trigonometric splines

Sergey I. Novikov

Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Аннотация: The existence and uniqueness of an interpolating periodic spline defined on an equidistant mesh by the linear differential operator $\mathcal{L}_{2n+2}(D)=D^{2}(D^{2}+1^{2})(D^{2}+2^{2})\cdots (D^{2}+n^{2})$ with $n\in\mathbb{N}$ are reproved under the final restriction on the step of the mesh. Under the same restriction, sharp estimates of the error of approximation by such interpolating periodic splines are obtained.

Ключевые слова: Splines, Interpolation, Approximation, Linear differential operator.

Язык публикации: английский

DOI: 10.15826/umj.2017.2.009



Реферативные базы данных:


© МИАН, 2024