Аннотация:
Исследована разрешимость задачи $\mathbb R$-линейного сопряжения (задачи Маркушевича) на единичной окружности. Эта задача эквивалентна векторно-матричной краевой задаче Римана. Ее коэффициент в параболическом случае вырождается (является треугольной матрицей-функцией). В этом случае дано полное описание факторизации матричного коэффициента и вычислены частные индексы этой факторизации. Основной метод исследования развит в серии статей авторов и основан на алгоритме Г.Н. Чеботарева. Построенная факторизация позволяет представить картину разрешимости задачи $\mathbb R$‑линейного сопряжения на единичной окружности в параболическом случае.