RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Астраханского государственного технического университета. Серия: Управление, вычислительная техника и информатика // Архив

Вестн. Астрахан. гос. техн. ун-та. Сер. управление, вычисл. техн. информ., 2019, номер 4, страницы 70–80 (Mi vagtu602)

Эта публикация цитируется в 1 статье

КОМПЬЮТЕРНОЕ ОБЕСПЕЧЕНИЕ И ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА

Численное решение нестационарного дробного дифференциального уравнения в задачах моделирования распространения токсичных веществ в подземных водах

А. А. Афанасьева, Т. Н. Швецова-Шиловская, Д. Е. Иванов, Д. И. Назаренко, Е. В. Казарезова

Государственный научно-исследовательский институт органической химии и технологии, Москва, Российская Федерация

Аннотация: В настоящее время во многих областях науки для моделирования различных процессов широко применяется теория дробного исчисления. Дифференциальные уравнения с производными дробного порядка используются при моделировании миграции токсичных веществ в пористых неоднородных средах и позволяют более корректно описать поведение токсичных веществ на больших расстояниях от источника. Аналитическое решение дифференциальных уравнений с производными дробного порядка зачастую оказывается очень сложным или даже невозможным. Предложен численный метод решения дифференциальных уравнений в частных производных дробного порядка по времени для описания миграции токсичных веществ в подземных водах. Для численного решения нестационарного дробного дифференциального уравнения разработана неявная разностная схема, являющаяся аналогом известной неявной разностной схемы Кранка–Николсона. Система разностных уравнений представлена в матричном виде. Решение задачи сводится к многократному решению трехдиагональной системы линейных алгебраических уравнений методом прогонки. Представлены результаты оценки распространения токсичного вещества в подземных водах на основе численного метода для модельных примеров. Выполнено сравнение концентраций вещества, полученных на основе аналитического и численного решения нестационарного одномерного дробного дифференциального уравнения. Результаты, полученные с помощью предлагаемого метода и на основании известного аналитического решения дробного дифференциального уравнения, достаточно хорошо согласуются между собой. Относительная ошибка составляет в среднем 9%. В отличие от известного аналитического решения разработанный численный метод может использоваться при моделировании распространения токсичных веществ в подземных водах с учетом их биодеградации.

Ключевые слова: дробная производная, производная по времени, дробное дифференциальное уравнение, разностная схема, подземные воды.

УДК: 504.054

Поступила в редакцию: 28.08.2019

DOI: 10.24143/2072-9502-2019-4-70-80



© МИАН, 2024