Аннотация:
Рассматриваются вопросы создания математического обеспечения и алгоритмов для задачи оценки инвестиционной привлекательности компаний. Объектом исследования выбраны IT-компании, в том числе стартапы (IT-проекты), обладающие в период роста особенными характеристиками. На основе системного анализа предметной области разработана система количественных и качественных характеристик для идентификации экономического состояния IT-компаний и стартапов во внешней и внутренней среде. Определены шкалы показателей различной природы. Приведены методы, позволяющие ввести отношения порядка и эквивалентности для найденных компаний-аналогов в целях сравнения их близости к анализируемой компании. Рассмотрены метрики, используемые для сравнения компаний, с учетом количественных и качественных характеристик. Рассмотрены возможности распределения инновационных IT-проектов с использованием алгоритмов нечеткой кластеризации. Приведена сравнительная характеристика двух базовых алгоритмов - алгоритма FCM и Густафсона–Кесселя. Представлена процедура кластеризации по каждому алгоритму, а также графически изображены результаты работы каждого алгоритма. Проведена оценка качества кластеризации с использованием коэффициента распределения, энтропии классификации и показателя Хие–Бени. Сделан вывод, что использование алгоритма Густафсона–Кесселя позволяет достичь более качественных результатов в решении задачи разбиения IT-проектов для цели их экономической диагностики.