Аннотация:
Проводится анализ эффективности применения методов машинного обучения для автоматизированной классификации и маршрутизации в библиотеке ITIL. Рассматриваются технология ITSM, библиотека
ITIL, дается определение инциденту, ИТ-услуги. Далее выполняется векторизация и выделение ключевых
слов в информации, записанной на естественном языке, для этого будет использоваться лемматизация (приведение словоформы к нормальной (словарной) форме) и мера TF-IDF. Приведен сравнительный анализ применения методов машинного обучения, а также сравнение результатов автоматической классификации текстовой информации с помощью градиентного бустинга и сверточной нейронной сети. Рассмотрены различные
параметры данных методов. Лучшие результаты для обучающей и тестовой выборки показал градиентный бустинг – 95 % верно классифицированных инцидентов; в случаях с нейронной сетью результат составляет
91 %, у сверточной нейронной сети – 92 %. Точность рукописного классификатора составляет 90 %, т. к. некоторые из инцидентов не подпадают под его условия и остаются неклассифицированными. Результаты применения методов машинного обучения для автоматизированной классификации инцидентов позволяют с высокой точностью выполнять маршрутизацию заявок на восстановление работоспособности ИТ-сервисов, сократить время реагирования и ошибки, связанные с человеческим фактором.