Аннотация:
Изучены возможности применения методов процессной аналитики (Process Mining) с целью анализа активности студентов на основе данных цифровых следов, которые студенты оставляют в системах управления обучением (LMS). Рассматривается специфика алгоритмов интеллектуального анализа процессов, которые могут быть использованы для анализа образовательных процессов, а именно эвристический и индуктивный алгоритмы как наиболее эффективные для построения моделей и подходящие для использования с целью анализа образовательных данных. Работа заключалась в создании способа применения алгоритмов процессной аналитики для выявления кластеров учащихся со схожими моделями поведения. Разработка алгоритма анализа процессов проводилась на основе журнала событий системы дистанционного обучения Костромского государственного университета. В результате работы построены и визуализированы модели поведения студентов, включая выявление и кластеризацию студентов со схожим поведением, построение эвристических сетей, сетей Петри, графа непосредственного следования, модели BPMN и дерева решений. Анализ полученных моделей показал, что разработанный способ позволяет изучать поведенческие паттерны студентов. Предложенный способ применения интеллектуального анализа образовательных процессов можно использовать для решения вопросов повышения продуктивности образовательного процесса, раннего обнаружения проблем, особенно в контексте изменения поведения студента в системе, а также развития и оптимизации образовательных программ. Кроме того, выявлены ограничения данной системы, которые могут препятствовать ее внедрению и применению в образовательную среду вузов.