RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник КРАУНЦ. Физико-математические науки // Архив

Вестник КРАУНЦ. Физ.-мат. науки, 2023, том 43, номер 2, страницы 20–30 (Mi vkam598)

Эта публикация цитируется в 1 статье

МАТЕМАТИКА

Об уточнении метода сведения системы линейных дифференциальных уравнений к одному уравнению высшего порядка, позволяющего найти общее решение исходной

Д. Н. Баротовa, Р. Н. Баротовb

a Финансовый университет при Правительстве Российской Федерации
b Худжандский государственный университет им. академика Бободжона Гафурова

Аннотация: Теория дифференциальных уравнений в настоящее время представляет собой исключительно богатый содержанием, быстро развивающийся раздел математики, тесно связанный с другими областями математики и с ее приложениями. При изучении конкретных дифференциальных уравнений, которые возникают в процессе решения физических задач, создаются методы, обладающие большой общностью и применяющиеся к широкому кругу математических проблем. Задачи интегрирования дифференциальных уравнений с постоянными коэффициентами оказали большое влияние на развитие линейной алгебры. В настоящее время задача решения системы линейных обыкновенных дифференциальных уравнений с постоянными коэффициентами $x'(t)=A\cdot x(t)$ является одной из важнейших проблем как теории обыкновенных дифференциальных уравнений, так и линейной алгебры. Одним из наиболее известных методов решения системы линейных обыкновенных дифференциальных уравнений с постоянными коэффициентами является метод приведения системы линейных уравнений к одному уравнению высшего порядка, позволяющему находить решения исходной системы в виде линейных комбинаций производных только одной функции. В данной работе исследована следующая задача: для каких матриц $A$ компоненты системы $x'(t)=A\cdot x(t)$ при любом начальном условии $x(t_0)=x_0$ могут быть выражены в виде линейных комбинаций производных только одной заданной компоненты $x_k(t)$. Сформулирован новый простой критерий выразимости и подробно доказана его корректность. Полученный результат может быть также применен при исследовании решений системы $x'(t)=A\cdot x(t)$ на периодичность и при изучении линейных систем на полную наблюдаемость.

Ключевые слова: однородная система линейных дифференциальных уравнений с постоянными коэффициентами, метод приведения системы линейных уравнений к одному уравнению высшего порядка, критерий выразимости, алгоритм.

УДК: 517.912, 519.85

MSC: Primary 34A30; Secondary 90C90

DOI: 10.26117/2079-6641-2023-43-2-20-30



© МИАН, 2024