Аннотация:
Настоящая работа посвящена построению оптимальной интерполяционной формулы, точной для тригонометрических функций sin($\omega$x) и cos($\omega$x). Здесь аналитические представления коэффициентов оптимальной интерполяционной формулы в некотором гильбертовом пространстве получены с использованием дискретного аналога дифференциального оператора. Принимая в качестве базисных функций коэффициенты оптимальной интерполяционной формулы, в методах конечных элементов приближенно решаются краевые задачи для обыкновенных дифференциальных уравнений второго порядка. В частности, показано, что коэффициенты оптимальной интерполяционной формулы могут служить набором эффективных базисных функций. Приближенные решения дифференциальных уравнений сравниваются с использованием построенных базисных функций и известных базисных функций. В частности, мы получили численные результаты для случаев, когда количество базисных функций равно 6 и 11. В обоих случаях мы получили, что точность приближенного решения краевых задач для обыкновенных дифференциальных уравнений второго порядка, найденного с помощью наших базисных функций, выше точности приближенного решения, найденного с использованием известных базисных функций. Доказано, что точность приближенного решения возрастает с увеличением числа базисных функций.