Аннотация:
Для отыскания вторичных течений, ответвляющихся от основного стационарного течения при уменьшении вязкости, необходимо рассмотреть линейную спектральную и линейную сопряженную задачи. В работе построена длинноволновая асимптотика линейной сопряженной задачи в двумерном случае при условии периодичности по пространственным переменным, когда один из пространственных периодов стремится к бесконечности. Выведены реккурентные формулы для нахождения $k$-го члена длинноволновой асимптотики скорости и давления. Показано, что если отклонение скорости от ее среднего по периоду значения является нечетной функцией, то коэффициенты разложения скорости являются четными при четных степенях и нечетными при нечетных степенях волнового числа. Получены соотношения между коэффициентами асимптотических разложений линейной спектральной и линейной сопряженной задач.