Аннотация:
В работе исследуется псевдопараболическое уравнение в трехмерной области. Уравнение такого вида предполагает наличие цилиндрической или сферической симметрии, что сразу позволяет перейти от трехмерной задачи к одномерной задаче, но с вырождением. В этой связи проводится исследование разрешимости устойчивости решений краевой задачи для вырождающегося псевдопараболического уравнения третьего порядка общего вида c переменными коэффициентами с условием третьего рода, а также разностных схем, аппроксимирующих эту задачу на равномерных сетках. Основной результат работы заключается в доказательстве априорных оценок, полученных методом энергетических неравенств, для решения задачи как в дифференциальном, так и в разностном виде. Полученные неравенства означают устойчивость решения относительно начальных данных и правой части. В силу линейности рассматриваемых задач эти неравенства позволяют утверждать, что приближенное решение сходится к точному решению рассматриваемой дифференциальной задачи в предположении существования самого решения в классе достаточно гладких функций. На тестовых примерах проведены численные эксперименты, подтверждающие теоретические результаты, полученные в работе.
Ключевые слова:уравнение с вырождением, краевая задача, условие третьего рода, априорная оценка, разностная схема, устойчивость и сходимость разностной схемы, уравнение влагопереноса, псевдопараболическое уравнение.