Аннотация:
В различных прикладных задачах часто нужно восстановить какую-либо характеристику объекта по некоторой информации (как правило, неполной или неточной) о других его характеристиках. Существуют различные подходы к решению аналогичных задач. В данной работе использовался подход, основанный на идеях Андрея Николаевича Колмогорова (в работах о $n$-поперечниках) о наилучших средствах приближения конечномерными подпространствами. Суть метода заключается в том, что ищется наилучшее средство аппроксимации на целом классе. Рассматривается задача одновременного восстановления операторов разделенных разностей всех порядков от $1$ до $(n-1)$-го включительно на классе последовательностей с ограниченной $n$-ой разделенной разностью. При этом преобразование Фурье данной последовательности известно приближенно на некотором отрезке в среднеквадратичной норме. Построено семейство оптимальных методов восстановления. Среди найденных методов есть те, которые используют минимальную информацию о последовательности, предварительно «сглаживая» ее. Найдено точное значение оптимальной погрешности восстановления операторов разделенных разностей. Предельным переходом из полученных результатов вытекает непрерывный случай.