Аннотация:
В пространстве гладких на единичной окружности вектор-функций рассматривается матричный оператор линейного сопряжения, порождаемый краевой задачей Римана. Предполагается, что коэффициенты краевой задачи являются гладкими матрицами-функциями. Вводится и изучается понятие гладкой вырожденной факторизации типов «плюс» и «минус» гладкой матрицы-функции. В терминах вырожденных факторизаций даются необходимые и достаточные условия нетеровости рассматриваемого матричного оператора Римана в пространстве гладких вектор-функций. Для гладкой на окружности функции, имеющей не более чем конечное число нулей конечных порядков, вводится и изучается понятие сингулярного индекса, обобщающее понятие индекса невырожденной непрерывной функции. Для нетерового матричного оператора Римана получена формула для вычисления индекса этого оператора, совпадающая с общеизвестной аналогичной формулой в случае, когда коэффициенты оператора Римана невырождены.