RUS  ENG
Полная версия
ЖУРНАЛЫ // Владикавказский математический журнал // Архив

Владикавк. матем. журн., 2023, том 25, номер 3, страницы 81–88 (Mi vmj874)

Обратная задача для сингулярно возмущенной системы с медленной поверхностью, состоящей из нескольких листов

Л. И. Кононенко

Институт математики им. С. Л. Соболева СО РАН, Россия, 630090, Новосибирск, пр. Ак. Коптюга, 4

Аннотация: Рассматривается сингулярно возмущенная система обыкновенных дифференциальных уравнений с малым параметром, описывающая задачу химической кинетики. Данная система исследуется с помощью метода интегральных многообразий, который служит удобным аппаратом изучения многомерных сингулярно возмущенных систем дифференциальных уравнений, позволяющим понижать размерность системы. Интегральное многообразие состоит из листов и при малом параметре $\varepsilon=0$ является медленной поверхностью. Для системы сформулированы прямая и обратная задача. Прямая задача заключается в следующем: по известным правым частям системы найти решение системы или доказать его существование. Обратная задача состоит в нахождении неизвестных правых частей системы дифференциальных уравнений по некоторым данным о решении прямой задачи. Сначала мы рассматриваем вырожденный случай, когда $\varepsilon=0$, при этом имеем некоторые ограничения на размерность медленных и быстрых переменных, на задание правых частей в виде многочленов (здесь степень многочлена равна 1), на количество листов медленной поверхности. Затем переходим к невырожденному случаю $\varepsilon\neq 0$. В случае одного листа медленной поверхности ранее была доказана теорема существования и единственности решения обратной задачи для этого случая. В данной работе рассмотрена система с медленной поверхностью, состоящей из нескольких листов. Доказана теорема существования и единственности решения такой системы. Доказательство опирается на результат, полученный ранее для системы с медленной поверхностью, состоящей из одного листа.

Ключевые слова: обратная задача, обыкновенные дифференциальные уравнения, сингулярно возмущенные системы, листы медленной поверхности, малый параметр, химическая кинетика.

УДК: 541.124+517.9

MSC: 34E15

Поступила в редакцию: 05.11.2022

DOI: 10.46698/n3062-4932-2162-c



© МИАН, 2024