Аннотация:
В данной работе рассматривается задача Коши для модифицированного уравнения Кортевега — де Фриза с зависящими от времени коэффициентами и самосогласованным источником в классе быстроубывающих функций. Для решения поставленной задачи используется метод обратной задачи теории рассеяния. Найдены пары Лакса, что позволит применить метод обратной задачи рассеяния для решения поставленной задачи Коши. Отметим, что в рассматриваемом случае оператор Дирака не является самосопряженным, поэтому собственные значения могут быть кратными. Найдены уравнения динамики изменения во времени данных рассеяния несамосопряженного оператора Дирака с потенциалом, являющимся решением модифицированного уравнения Кортевега — де Фриза с переменными коэффициентами, зависящими от времени и с самосогласованным источником в классе быстроубывающих функций. Рассмотрен особый случай модифицированного уравнения Кортевега — де Фриза с переменными коэффициентами, зависящими от времени, и самосогласованным источником, а именно нагруженное модифицированное уравнение Кортевега — де Фриза с самосогласованным источником. Найдены уравнения динамики изменения во времени данных рассеяния несамосопряженного оператора Дирака с потенциалом, являющимся решением нагруженного модифицированного уравнения Кортевега — де Фриза с переменными коэффициентами в классе быстроубывающих функций. Приведены примеры, иллюстрирующие применение полученных результатов.
Ключевые слова:нагруженное модифицированное уравнение Кортевега — де Фриза, решения Йоста, данные рассеяния, интегральное уравнение Гельфанда — Левитана — Марченко.