RUS  ENG
Полная версия
ЖУРНАЛЫ // Владикавказский математический журнал // Архив

Владикавк. матем. журн., 2023, том 25, номер 4, страницы 120–134 (Mi vmj889)

Задача Трикоми — Неймана для трехмерного уравнения смешанного типа с сингулярными коэффициентами

А. К. Уринов, К. Т. Каримов

Ферганский государственный университет, Узбекистан, 150100, Фергана, ул. Мураббийлар, 19

Аннотация: В работе исследована задача Трикоми — Неймана для трехмерного уравнения смешанного типа с тремя сингулярными коэффициентами в смешанной области, состоящей из четверти цилиндра и прямоугольной призмой. Доказана однозначная разрешимость поставленной задачи в классе регулярных решений. При этом использован метод Фурье, основанный на разделение переменных. После разделения переменных в гиперболической части смешанной области, появляются задачи на собственные значения для одномерных и двумерных уравнений. Решая эти задачи, находим собственные функции соответствующих задач. Для решения двумерной задачи использована формула, дающая решения задачи Коши — Гурса. В результате найдены решения задач на собственных значений для трехмерного уравнения в гиперболической части. С помощью этих собственных функций и условия склеивания получена нелокальная задача в эллиптической части смешанной области. Для решения задачи в эллиптической части, она была отражена в цилиндрической системе координат, а потом путем разделения переменных получены задачи на собственные значения для двух обыкновенных дифференциальных уравнений. На основании свойства полноты систем собственных функций этих задач доказана теорема единственности. Решение исследуемой задачи построено в виде суммы двойного ряда. При обосновании равномерной сходимости построенных рядов использовались асимптотические оценки функций Бесселя действительного и мнимого аргумента. На их основе получены оценки для каждого члена ряда, что позволило доказать сходимость полученного ряда и его производных до второго порядка включительно, а также теорему существования в классе регулярных решений.

Ключевые слова: задача Трикоми — Неймана, задача Коши — Гурса, сингулярный коэффициент, функция Бесселя, гипергеометрический функция Гаусса и Гумберта.

УДК: 517.956.6

MSC: 35M10, 35M12

Поступила в редакцию: 18.08.2022

DOI: 10.46698/n1128-9779-9257-d



© МИАН, 2024