Аннотация:
Приведена постановка обратной задачи по идентификации переменных материальных характеристик поперечно неоднородного термоэлектроупругого слоя, нижняя грань которого жестко защемлена, закорочена и поддерживается при нулевой температуре, а на верхней неэлектродированной грани приложена нестационарная нагрузка. С помощью преобразования Фурье двумерная обратная задача сведена к ряду одномерных задач, аналогичных задачам для упругого и термоупругого стержня с модифицированными характеристиками. Предложен поэтапный подход по идентификации материальных характеристик слоя. Обезразмеренные прямые задачи после применения преобразования Лапласа решаются на основе аппарата интегральных уравнений Фредгольма 2-го рода и обращении трансформант на основе теории вычетов. Методом линеаризации получены операторные уравнения 1-го рода для решения обратных задач на каждом этапе. Проведены вычислительные эксперименты по реконструкции материальных характеристик термоэлектроупругого слоя, как при отсутствии зашумления входной информации, так и при 1%-м шуме. Выявлены эффективные для идентификации временные отрезки съема дополнительной информации. Проведен анализ результатов идентификации термомеханических характеристик слоя.
Ключевые слова:коэффициентная обратная задача термоэлектроупругости, функционально-градиентный пироматериал, слой, идентификация, интегральное уравнение Фредгольма 1-го рода.