RUS  ENG
Полная версия
ЖУРНАЛЫ // Вычислительные методы и программирование // Архив

Выч. мет. программирование, 2009, том 10, выпуск 2, страницы 263–267 (Mi vmp375)

Вычислительные методы и приложения

Применение многопроцессорных систем для решения двумерных интегральных уравнений Фредгольма I рода типа свертки для векторных функций

Н. А. Евдокимоваa, Д. В. Лукьяненкоb, А. Г. Яголаb

a Южно-Уральский государственный университет, г. Челябинск
b Московский государственный университет имени М.В.Ломоносова, физический факультет

Аннотация: Рассматриваются особенности численной реализации решения двумерных интегральных уравнений Фредгольма I рода типа свертки для векторных функций с применением многопроцессорных систем. Для решения этой некорректной задачи применяется алгоритм решения интегрального уравнения типа свертки с использованием метода регуляризации, основанного на минимизации функционала А.Н. Тихонова с регуляризатором - квадратом нормы в пространстве $W_2^2\l[(-\infty,+\infty)\times(-\infty,+\infty)]$. Для отыскания экстремали функционала А.Н. Тихонова применяется двумерное дискретное преобразование Фурье. Выбор параметра регуляризации осуществляется в соответствии с принципом обобщенной невязки. Предлагаются схемы распараллеливания задачи, показывается эффективность данного подхода. Работа выполнена при финансовой поддержке РФФИ (коды проектов 08-01-00160 и 07-01-92103-ГФЕНа).

Ключевые слова: обратная задача; уравнение типа свертки; векторная функция; математическое моделирование; регуляризация Тихонова; параллельные алгоритмы.

УДК: 519.6



© МИАН, 2024