Аннотация:
Одним из главных препятствий масштабированному распараллеливанию алгебраических методов декомпозиции для решения сверхбольших разреженных систем линейных алгебраических уравнений (СЛАУ) является замедление скорости сходимости аддитивного итерационного алгоритма Шварца в подпространствах Крылова при увеличении количества подобластей. Целью настоящей статьи является сравнительный экспериментальный анализ различных приeмов ускорения итераций: параметризованное пересечение подобластей, использование специальных интерфейсных условий на границах смежных подобластей, а также применение грубосеточной коррекции (агрегации, или редукции) исходной СЛАУ для построения дополнительного предобусловливателя. Распараллеливание алгоритмов осуществляется на двух уровнях программными средствами для распределeнной и общей памяти. Тестовые СЛАУ получаются при помощи конечно-разностных аппроксимаций задачи Дирихле для диффузионно-конвективного уравнения с различными значениями конвективных коэффициентов на последовательности сгущающихся сеток.
Ключевые слова:декомпозиция областей, аддитивный метод Щварца, алгоритмы редукции, предобусловленные крыловские процессы, масштабируемое распараллеливание, распределeнная и общая память, вычислительный эксперимент.