Аннотация:
Предложен подход к построению одноточечных итерационных методов для решения нелинейных уравнений одного переменного. Подход основан на использовании понятия полюса в качестве особой точки и на применении критерия сходимости Коши. Показано, что такой подход приводит к новым итерационным процессам высшего порядка, которые имеют более широкую область сходимости по сравнению с известными методами. Доказаны теоремы сходимости и получены оценки скорости сходимости. Для многочленов, имеющих только действительные корни, итерационный процесс сходится для любого начального приближения. В общем случае для действительных корней трансцендентных уравнений сходимость имеет место при выборе начального приближения в окрестности корня.
Ключевые слова:итерационные процессы, метод Ньютона, логарифмическая производная, простой полюс, сжатое отображение, метод третьего порядка, особая точка, трансцендентные уравнения.