Аннотация:
Статья посвящена анализу и оптимизации явных разностных схем для решения уравнений переноса, возникающих на этапе адвекции метода расщепления по физическим процессам. Метод может применяться как для решеточных уравнений Больцмана, так и при решении кинетических уравнений общего вида. Рассматриваются схемы второго-четвертого порядков аппроксимации. Для уменьшения эффектов численных диссипации и дисперсии используются схемы с параметром. С использованием метода фон Неймана и полиномиальной аппроксимации границ областей устойчивости получены условия устойчивости схем в виде неравенств на значения параметра Куранта. Оптимальные значения параметра для регулирования диссипативных и дисперсионных эффектов предлагается находить посредством решения задач минимизации функций максимума. Схемы с оптимальными значениями параметра применяются при решении тестовых задач - для одномерного и двумерного уравнений переноса, а также при применении метода расщепления к решению задачи о течении в каверне с подвижной крышкой.