RUS  ENG
Полная версия
ЖУРНАЛЫ // Вычислительные методы и программирование // Архив

Выч. мет. программирование, 2019, том 20, выпуск 1, страницы 29–44 (Mi vmp945)

Совместное использование технологий MPI и OpenMP для параллельного поиска похожих подпоследовательностей в сверхбольших временных рядах на вычислительном кластере с узлами на базе многоядерных процессоров Intel Xeon Phi Knights Landing

Я. А. Краева, М. Л. Цымблер

Южно-Уральский государственный университет, г. Челябинск

Аннотация: В настоящее время поиск похожих подпоследовательностей требуется в широком спектре приложений интеллектуального анализа временных рядов: моделирование климата, финансовые прогнозы, медицинские исследования и др. В большинстве указанных приложений при поиске используется мера схожести Dynamic Time Warping (DTW), поскольку на сегодняшний день научное сообщество признает меру DTW одной из лучших для большинства предметных областей. Мера DTW имеет квадратичную вычислительную сложность относительно длины искомой подпоследовательности, в силу чего разработан ряд параллельных алгоритмов ее вычисления на устройствах FPGA и многоядерных ускорителях с архитектурами GPU и Intel MIC. В настоящей статье предлагается новый параллельный алгоритм для поиска похожих подпоследовательностей в сверхбольших временных рядах на кластерных системах с узлами на базе многоядерных процессоров Intel Xeon Phi поколения Knights Landing (KNL). Вычисления распараллеливаются на двух уровнях: на уровне всех узлов кластера - с помощью технологии MPI и в рамках одного узла кластера - с помощью технологии OpenMP. Алгоритм предполагает использование дополнительных структур данных и избыточных вычислений, позволяющих эффективно задействовать возможности векторизации вычислений на процессорных системах Phi KNL. Эксперименты, проведенные на синтетических и реальных наборах данных, показали хорошую масштабируемость алгоритма.

Ключевые слова: временной ряд, поиск похожих подпоследовательностей, параллельный алгоритм, OpenMP, Intel Xeon Phi, Knights Landing, представление данных в памяти, векторизация вычислений.

УДК: 004.272.25; 004.421; 004.032.24

Поступила в редакцию: 04.12.2018



© МИАН, 2024