Аннотация:
Рассматривается задача Штурма–Лиувилля
\begin{gather*}
-y''+q(x)y=\lambda y,\\
y(0)=y(1)=0
\end{gather*}
с сингулярным потенциалом $q(x)$, представляющим собой обобщенную производную некоторой вещественной функции класса $L_2[0,1]$. Развиваются два подхода для изучения осцилляционных свойств собственных функций этой задачи. Первый подход основан на обобщении методов теории Штурма, а второй – на развитии вариационных принципов.