Аннотация:
Целью настоящей работы является нахождение решений системы уравнений Обербека–Буссинеска плоской конвекции Бенара–Марангони вязкой несжимаемой жидкости, в которых радиальная составляющая градиента температуры может обратиться в нуль. Показано, что исходная система может быть сведена к системе обыкновенных дифференциальных уравнений одиннадцатого порядка. Получено точное решение в точке экстремума температуры (при нулевом числе Грасгофа). Интегрирование уравнений осуществлено в безразмерных переменных, которые введены неклассическим способом: введен характерный масштаб по каждой переменной, а не по линейному характерному размеру слоя. Найденное решение служит начальным приближением для построения решения конвекции Бенара–Марангони при числах Грасгофа, больших, чем нуль.
Ключевые слова:осесимметричная термокапиллярная конвекция (конвекция Бенара–Марангони), локализованный параболический нагрев, точное решение, изолинии, матрица Гессе, собственные числа, локализация корней полиномов, локализация собственных чисел матрицы.