Аннотация:
Разработан конечно-элементный подход для численного анализа параметров напряжённо-деформированного состояния резинометаллической сейсмоопоры в условиях вязкоупругого деформирования при наличии слоев из пористой резины. Упругие характеристики пористой резины определялись методом самосогласования для пор сферической формы. Для моделирования вязкоупругого поведения использовались интегральные соотношения на основе наследственной теории Больцмана–Вольтерра. В качестве ядра релаксации используется экспоненциальное ядро, содержащее мгновенные и длительные упругие характеристики материала. На основе вариационного принципа строится конечно-элементная модель деформирования конструкции с пространственной дискретизацией и дискретизацией по времени. Полученная система разрешающих уравнений содержит вектор дополнительной нагрузки, моделирующий реологические составляющие процесса деформирования; для её решения использовался модифицированный метод Ньютона–Канторовича. Для повышения точности получаемых результатов применялась уточнённая моментная схема конечного элемента с кубической аппроксимацией перемещений. Исследована численная сходимость конечно-элементных схем на примере решения задачи Ляме для полого вязкоупругого цилиндра из пористой резины. Проведён расчёт резинометаллической сейсмоопоры в предположении о релаксации только модуля сдвига пористой резины. Получены основные параметры напряжённо-деформированного состояния в зависимости от времени и марок применяемых резин.