Аннотация:
Вычислены базисные калибровочно-инвариантные тензоры, алгебраически выражающиеся через матрицу конформной кривизны. В частности, разложение основного тензора на калибровочно-инвариантные неприводимые слагаемые состоит из 4-х слагаемых, одно из которых определяется только одним скаляром. Этот скаляр, во-первых, входит в уравнения Эйнштейна с космологическим членом в виде космологического скаляра. Во-вторых, метрика, будучи умноженной на этот скаляр, становится калибровочно-инвариантной. В-третьих, геометрическая точка, не являющаяся калибровочно-инвариантной, после умножения на квадратный корень из этого скаляра становится калибровочно-инвариантным объектом — материальной точкой. В-четвертых, уравнения движения материальной точки оказываются точно такими же, как и в общей теории относительности, что позволяет отождествить корень квадратный из этого скаляра с массой. В итоге получен неожиданный результат: космологический скаляр совпадает с квадратом массы. В-пятых, космологический скаляр позволяет ввести на многообразии калибровочно-инвариантную 4-меру. С помощью этой меры найден новый вариационный принцип для уравнений Эйнштейна с космологическим членом. Матрица конформной кривизны кроме компонент основного тензора содержит и другие компоненты. Найдены все основные калибровочно-инвариантные тензоры, выражающиеся через эти компоненты. Они имеют валентность 3 или 1. Выполнение уравнений Эйнштейна равносильно калибровочной инвариантности одного из этих ковекторов. Поэтому многообразия конформной связности, где выполняются уравнения Эйнштейна, можно подразделить на 4 вида по типу этого ковектора: времениподобный, пространственноподобный, светоподобный или нулевой.