Аннотация:
Формулируется и решается задача о формировании тела постоянными внешними силами в условиях установившейся ползучести в течение заданного времени $t_*$ таким образом, чтобы после снятия нагрузок перемещения точек поверхности принимали заданные значения. Рассматривается случай малых деформаций. При определённых предположениях и ограничениях доказывается теорема единственности для решения данной задачи. Анализируются прикладные вопросы задачи нахождения внешних воздействий, которые необходимы для получения требуемой формы тела за заданное время в условиях реологического деформирования после снятия внешних сил $($с учётом упругой разгрузки$)$. Детально выполнен анализ тонкостенной изотропной пластины для случая плоского напряжённого состояния. Решение для перемещений ищется в виде ряда по малому параметру. Приводится модельное решение для круглой пластинки единичного радиуса под действием постоянных внешних нагрузок, которая после после ползучести и упругой разгрузки должна иметь заданное поле перемещений.