Аннотация:
Рассматривается новый метод решения плохо обусловленных линейных алгебраических систем с применением дифференцирующего оператора. Такого вида задачи возникают при решении интегральных уравнений Фредгольма первого рода. Основная сложность данного метода состоит в том, что матрица дискретного аналога оператора дифференцирования является матрицей неполного ранга. Для решения подобного класса задач используются методы, основанные на обобщенном сингулярном разложении. Этот подход имеет очень высокую вычислительную сложность, а также приводит к возникновению дополнительной погрешности в вычислениях. Предложенный в данной работе метод основан на преобразовании исходной задачи регуляризации к эквивалентной расширенной регуляризованной нормальной системе уравнений с применением дискретного аналога оператора дифференцирования. Весьма актуальной является проблема исследования спектра матрицы расширенной регуляризованной нормальной системы уравнений с матрицей дискретного оператора дифференцирования неполного ранга. Исследование точного спектра собственных значений для данной задачи не представляется возможным, поэтому в статье получены оценки границ спектра матрицы. Оценка границ спектра матрицы основана на известной теореме Куранта–Фишера. Показано, что полученные оценки границ спектра матрицы расширенной системы являются достаточно точными. Производится сравнение предложенного метода со стандартным методом, основанным на решении нормальной системы уравнений. В работе показано, что число обусловленности матрицы метода, основанного на нормальной системе уравнений, имеет намного большую величину, чем число обусловленности матрицы метода расширенных нормальных уравнений. В заключении приводится описание тестовых задач, подтверждающих результаты теоретических исследований, полученных в работе.
Ключевые слова:спектр матрицы, расширенные регуляризованные нормальные системы, число обусловленности.