Аннотация:
Для решения уравнений диффузионного типа в настоящее время широко применяется конечно-элементный метод Галёркина с разрывными базисными функциями (РМГ), который характеризуется высоким порядком точности получаемого решения. Для применения РМГ исходное уравнение второго порядка преобразуется к системе дифференциальных уравнений в частных производных первого порядка. Для этого вводятся вспомогательные потоковые переменные. В соответствии с традиционным подходом в РМГ решение в каждой ячейке основной сетки представляется в виде линейной комбинации базисных функций. Тепловой поток ищется в виде линейной комбинации базисных функций на ячейках двойственной сетки. Двойственная сетка состоит из медианных контрольных объемов, построенных относительно вершин основной сетки. Интегрирование по объемам и граням ячеек базируется на использовании квадратурных формул Гаусса. Численный алгоритм рассматривается на примере решения начально-краевой задачи для трехмерного уравнения теплопроводности.
Численная методика реализована в виде программного продукта и ориентирована на решение трехмерных задач теплопроводности на неструктурированных тетраэдральных сетках. В работе представлены результаты расчетов ряда тестовых задач, демонстрирующие возможности и точность методики.
Ключевые слова:уравнения параболического типа, разнесенные сетки, разрывный метод Галёркина.